
1

Mail Transfer 2 (MT2)

Eric A. Hall

ehall@ntrg.com

June 24, 2003

http://www.ntrg.com/specs/mt2/mt2-12.ppt

Minimalist Architecture

• Layered data model

• End-to-end extensions

• Validated host/user
identity information

• Protocol semantics

• Routing services

• Gateway definitions

Everything else is a layered service

Layered Data Model

• Three MIME objects for each message:
– message/envelope

– message/headers

– message body (text/plain, etc)

• Each message object is transferred and
stored separately

Message Data Objects

• Message Envelope and Headers use XML
– Structured header field entities

– Registered namespace of entities

– Direct support for UTF-8

• Message Body is raw MIME entity
– Text/Plain, etc.

– Eight-bit data-widths explicitly allowed

Message Envelope

• Contains data that is not directly related to
the message body
– Envelope senders/recipients

– Signatures/certificates

– Transfer-path trace data

– Delivery extensions (e-postage tags, etc.)

– Error report meta-data

Message Headers and Body

• Message headers contain data related to the
message, but not part of the contents
– To, From, Subject, ...
– Recipient extensions (vCard requests, etc.)

• Message body contains payload
– Traditional email messages
– Hinting data for control messages

• Both can be signed/encrypted

2

Message Transfer and Storage

• Each object transferred separately
– Explicit permission-to-send for each
– Explicit acknowledgement for each
– Allows pre-transfer filtering/rejection

• Each section must be accessible discretely
– Encrypted message headers need separate data
– Control messages might have envelope only
– IMAP header fetching

End-to-End Extensions

• Different extension types
– Transfer extensions give hop-by-hop features

– Delivery extensions give @domain features

– Recipient extensions give user@ features

• Extensions provide carrier service
– whitelist negotiation, hashcash and e-postage

fulfillment, spam-trap matches, mailing list
management, chess-by-mail, etc.

Extension Architecture

• Only a few extensions should be defined in
the core spec
– Necessary negotiation controls and errors
– Rest pushed out to layered service space

• Extending protocol and agents must be easy
– Installing application should ~transparently

enable the associated options (not too easy!)
– OID-schema registries for automation?

Transfer Extensions (cont’d)

• Hop-by-Hop feature negotiation
• Extension-specific verbs or OPT parameters

– Message status (STAT command)
– RFC1122 TCP Urgent (OPT URG parameter)

• Extensions have private OID branches
– Extension namespace uses OID space
– May reuse standard return codes

• Errors returned in-band

Delivery Extensions

• Processed by @domain after last-hop
– Hashcash/e-postage payment data

– Negotiated whitelists

– Delivery notifications

• Stored in message/envelope object

• Errors returned via control messages

Delivery Extensions (cont’d)

• Carried in message/envelope
– Unencrypted
– Extensions can be flagged as critical
– Unknown critical extensions cause entire

message to be rejected

• Extensions have private OID branches
– Extension namespace uses OID space
– May reuse standard return codes

3

Recipient Extensions

• Processed by localpart@
– Request your vCard

– Out-of-band application
control messages (eg,
mailing list management)

– “Black queen takes rook”

– Disposition notifications

Recipient Extensions (cont’d)

• Carried in message/headers
– Can be encrypted/signed

• User must control default processing
– Automatic processing allows worms
– Automatic errors are silent notifications

• Extensions have private OID branches
– Extension namespace uses OID space
– May reuse standard return codes

Validated Identities

• Hosts and sender certificates
– Host identity presented during session setup

– Transfer headers recursively signed with
• Sender identity

• Per-hop host identity

• Identity can be used for several filters
– Access-control restrictions

– Extension restrictions

Identity Types

• User identity bound to email address
– Personal description (name, etc.) cannot be

trusted unless CA is trusted

• Host identity bound to hostname
– Hosts also have process@domain user

certificates for error messages, control
messages, etc.

Validity vs Trust

• Validation only speaks to authorization
– The parties can be verified as authorized to use

the certificates that they present

– Broad enforcement is possible at this level

• Validation does NOT speak to trust
– Does NOT ensure they are who they say (only

that they are authorized to say it)

– 3rd-party “vouch lists” needed for trust

Validation Mechanisms

• Three allowable validation mechanisms
– If issuer is known/trusted, MUST validate

against local CA certificate repository

– If issuer is not known/trusted, MAY validate
against public delegation data (see next slide)

– Hosts can explicitly trust another host to have
performed validation (eg, interior gateway)

• Private links can exchange private CA certs

4

Trust Mechanisms

• No mandatory trust mechanisms
– Trusted certificate authorities, presumed to

have verified identity information

– Commercial trust-broker lists, eg bonded
senders and other whitelists

– Community trust-broker lists, eg public trust
lists, blacklists of known abusers

Delegated CA Validation

1) Extract issuerAltName dNSName attribute
from user/host certificate

2) Verify that the issuer domain name is a
delegation parent of the subject name

3) Lookup issuer domain name and retrieve
certificate data

4) Validate the host/user certificate

FIRS (CRISP WG) Sample

• Sample host certificate:
– Subject: goose.ehsco.com
– Alt Issuer: ehsco.com (path to subject is good)

• Generate LDAP lookup
– Srchbase: cn=inetResources,dc=ehsco,dc=com
– Assertion: (&(objectclass=inetDnsDomain)

(dn:cn:=ehsco.com))
– Attribute: caCertificate

Fungible Private CA Certificates

• Parties can change CA certificates at will
– Doing so will invalidate all previously issued

host/user certificates
– Admins can still filter against the domain name

in the issuerAltName field and preempt all
user/host certificates from that issuer

– 3rd-parties can offer issuerAltName blacklists

• 3rd-parties can offer vouch lists for orgs,
adding extra credibility

Protocol Semantics

• Stateful sessions
– Session setup
– Message transfer loop (repeat as needed)
– Session teardown

• Asynchronous within each state
– Interleaved data and commands/responses
– Full-duplex on-demand (no TURN)
– TCP Urgent allows commingling

Request Semantics

• Each request provides:
– Sequence number tag for the request
– Verb for the request
– Verb-specific parameters
– Extensions and parameters enclosed in () pair
– Full request enclosed in [] pair

• Simple operations use one transaction pair,
while data-transfer operations use two pairs

5

Standard Command Verbs

– HELO {cert-size} (send host identity)

– OPT <extension=parameters> <...>
• PIPE=ON (enable/disable pipelining)

• TRACE=ON (enable/disable traceroute)

• URG (RFC1122 TCP Urgent compliance)

– XFER msg-id MIME/type {part-size} {num-parts}

– ABOR tag (kill previous command)

– NOOP (keep-alive)

– QUIT

Response Semantics

• Each response provides:
– Original sequence number tag
– Static command response codes (OK/ERR/...)
– Extensible command result codes (OID.n.n)
– Free-text message
– Extension responses enclosed in () pair
– Full response enclosed in [] pair

• Unsolicited responses use “*” for tag

Response and Result Codes

• Response codes indicate acceptance
– OK, command accepted and processed

– ERR, command refused or fatal failure

– TMP, command pending additional input

• Result codes provide detailed output
– Standard and extension-specific OIDs

– OID codes are extensible, no collisions

Request/Response Sample

• Syntax example
C:[seq verb <params> <(ext1 <params>)> <...>]

S:[seq rsp ret <(ext1 ret text)> <...> text]

• OPT negotiation non-normative sample
C:[1 OPT (BAZ=FOO;BAR)]

S:[1 ERR 99.0.5.0 (BAZ ERR 99.0.5.9 Unknown.)]

• Data-transfer non-normative sample
C:[2 XFER m23@test.com message/envelope {3279} {0}]

S:[2 TMP 99.0.3.5 Go ahead with envelope.]

C:(3279 octets)

S:[2 ERR 99.0.5.23 Invalid sender certificate.]

Session Setup

• Server sends list of anonymous options

• Client sends greeting command and data
– Client sends host certificate

– Server validates and checks permissions

– Server may send its own host certificate

– Systems may negotiate encryption

• Server sends list of authenticated options

Setup Example

• Non-normative greeting sample
S:[* TMP 99.0.3.1 (VER=0.9;1.0) Hi there.]

C:[1 HELO {4928}]

S:[1 TMP 99.0.3.2 Friend or foe!]

C:(4928 bytes of certificate data)

<optional bilateral exchange, encryption>

S:[1 OK 99.0.2.1 (BAR) Greetings friend.]

C:[2 OPT (BAR=FOO)]

S:[2 OK 99.0.2.2 (BAR OK 121.0.2.1) Go ahead.]

6

Transfer Semantics

• Three steps to each message transfer
– message/envelope
– message/headers
– Message body (MIME body)

• Each step has two transaction pairs
– Request to send
– Actual send

• Untrusted hosts may be forced synchronous

Transfer Semantics (cont’d)

• Request-to-send parameters:
– Message-ID for the message
– Message part (envelope/headers/body)
– Size in octets of part fragment
– Number of pending fragments

• Server responses for each pair
– Explicit permission to send the data
– Acknowledgement for the actual data

Transfer Example

• Non-normative transfer sample
C:[2 XFER m23@test.com message/envelope {3279} {0}]

S:[2 TMP 99.0.3.5 Go ahead with envelope.]

C:(3279 octets)

S:[2 ERR 99.0.5.23 Invalid sender certificate.]

• Non-normative abort sample
C:[3 XFER m23@test.com message/body {59203} {0}]

S:[3 TMP 99.0.3.8 Go ahead with message body.]

C:(only 200 octets)

C:[4 ABOR=3]

S:[4 OK 108.0.2.1 Command number 3 killed.]

S:[3 ERR 99.0.5.23 Transfer failed.]

Performance Characteristics

• Unknown/untrusted entities treated warily
– Half-duplex, synchronous transfers

• Faster-than-NNTP bulk transfers for known
and trusted entities
– Interleaved, asynchronous data objects and

command/response pairs
– Post-transfer delayed rejections
– Nailed-up full-duplex sessions

Anti-Spam Capabilities

• Pre-transfer filtering
– Host untrusted, message too large, etc.

– Trust problems

• Post-transfer filtering
– Delivery extension filtering

– Recipient extension filtering

– Extensible architecture

Pre-Transfer Filtering

• Invalid host certificate
• Hostname/subject

mismatches
• Unauthorized client
• 3rd-party host/domain

black/whitelists
• Invalid trace-data

• Prohibited senders,
recipients, subject...

• Encryption levels

• Undesirable options

• MIME syntax errors

• Prohibited content

Pre-transfer filtering saves $

7

Post-Transfer Filtering

• Delivery extensions
– Can be enabled per-domain or per-recipient

– E-Postage payment data

– Hash-cash proof data

• Recipient extensions
– Challenge-response proof data

– “Not-in-address-book” vCard negotiation

Routing Services

• @domain routing
– Public routing with DNS SRV?

– Public routing with CRISP extension?

– Private routing with other services?

– Define weighting metrics

• recipient@ routing is possible

• Extension-specific routing is possible

Legacy Messaging Integration

• Bi-directional object mappings
– Message parts mapped to MIME entities

• Bi-directional header mappings
– “Received” mapped to “<RFC821.Received>”

• Identity mappings
– SMTP sender mapped to sender certificate

• Must be reversible both ways

Deployment Staging

• Site-to-Site transfers for carriers
– Email houses

– Large-scale ISPs

• Site-to-Site for medium/small shops

• Extend to clients eventually

• Will need upgrades to POP/IMAP as well
for full end-to-end capabilities

Summary

• Host/user/domain identity information
– Filtering
– Private enforcement actions

• End-to-end extensions
– Anti-spam delivery applications
– User-based extra-mail applications

• Performance enhancements
• Can be deployed relatively quickly

